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Topological quantum matter

Band topology: free fermions in a bulk band have
protected states on the edge (topological insulators,
Majorana chain etc.)

Emergent gauge fields: “anyons” in the bulk, and
ground state degeneracy dependent upon topology
of space. Protected edge states may or may not
exist

Combination of band topology and emergent
gauge fields leads to exotic new possibilities (non-
Abelian bulk anyons)
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Mott insulator: Triangular lattice antiferromagnet
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Nearest-neighbor model has non-collinear Neel order




Mott insulator: Triangular lattice antiferromagnet

Spin liquid obtained in a generalized
spin model with $=1/2 per unit cell @__®
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P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
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Mott insulator: Triangular lattice antiferromagnet

/5 spin liquid
with neutral S = 1/2 spinons
and vison excitations

non-collinear Néel state

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
X.-G. Wen, Phys. Rev. B 44,2664 (1991)
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Excitations of the Z; Spin liquid

Spinon: S=1/2, charge 0 = — (11)-[41))

1
e (boson) or € (fermion) particle 2




Excitations of the Z; Spin liquid

Spinon: S=1/2, charge 0 = — (11)-[41))
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e (boson) or e (fermion) particle J2

/

—

_/

\
~/ —7 N> l’
) </ «/
> / \ —7
[ - =
\
[ \ Q

/
[/
P

¥

=



Excitations of the Z; Spin liquid
A vison

m (boson) particle




Excitations of the Z; Spin liquid
A vison

m (boson) particle




Excitations of the Z; Spin liquid
A vison

m (boson) particle




Excitations of the Z; Spin liquid
A vison

(boson) particle

e




Excitations of the Z; Spin liquid
A vison _ L QHHHD

m (boson) particle
. }i *

i
06% ...........

\

\ 7




Excitations of the Z; Spin liquid
A vison

m (boson) particle




Topological order in the Z; spin liquid ground state

' N
| ‘

4-fold degeneracy on the torus



Topological order in the Z; spin liquid ground state

_ vison |

4-fold degeneracy on the torus



Topological order in the Z; spin liquid ground state

4-fold degeneracy on the torus



Properties of the Z2 spin liquid

e 3 non-trivial particles: e (boson), € (fermion), m (boson).



Properties of the Z2 spin liquid

e 3 non-trivial particles: e (boson), € (fermion), m (boson).

e ¢ and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).



Properties of the Z2 spin liquid

e 3 non-trivial particles: e (boson), € (fermion), m (boson).

e ¢ and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e ¢ and m are also mutual semions.



Properties of the Z2 spin liquid

3 non-trivial particles: e (boson), € (fermion), m (boson).

e and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e and m are also mutual semions.

The bound state e and m (if it exists) is an e. Fusion rule:
e X m = e.



Properties of the Z2 spin liquid

3 non-trivial particles: e (boson), € (fermion), m (boson).

e and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e and m are also mutual semions.

The bound state e and m (if it exists) is an e. Fusion rule:
e X m = e.

The bound state of € and m i1s an e. Fusion rule: e x m = e.



Properties of the Z2 spin liquid

3 non-trivial particles: e (boson), € (fermion), m (boson).

e and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e and m are also mutual semions.

The bound state e and m (if it exists) is an e. Fusion rule:
e X m = e.

The bound state of € and m i1s an e. Fusion rule: e x m = e.

The bound state of e and € 1s a m. Fusion rule: e X € = m.



Properties of the Z2 spin liquid

3 non-trivial particles: e (boson), € (fermion), m (boson).

e and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e and m are also mutual semions.

The bound state e and m (if it exists) is an e. Fusion rule:
e X m = e.

The bound state of € and m 1s an e. Fusion rule: ¢ x m = e.
The bound state of e and € is a m. Fusion rule: e x € = m.

There is a 4-fold degeneracy on the torus.



Properties of the Z2 spin liquid

3 non-trivial particles: e (boson), € (fermion), m (boson).

e and m are mutual ‘semions’: the e particle acquires a phase
(—1) upon encircling the m particle (and vice versa).

e and m are also mutual semions.

The bound state e and m (if it exists) is an e. Fusion rule:
e X m = e.

The bound state of € and m 1s an e. Fusion rule: ¢ x m = e.
The bound state of e and € 1s a m. Fusion rule: e X € = m.
There is a 4-fold degeneracy on the torus.

Protected edge states do not exist in general, but could ap-
pear in the presence of symmetries.
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Mott insulator: Triangular lattice antiferromagnet

/5 spin liquid
with neutral S = 1/2 spinons
and vison excitations

non-collinear Néel state

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
X.-G. Wen, Phys. Rev. B 44,2664 (1991)



The Hubbard Model

Ztm CinCja T UZ (niT o %) (nz¢ o _> luzczozcwé

t;; — “hopping”. U — local repulsion, ;¢ — chemical potential

Spin index a =1, |

_ AT
Niae — C;,Cix

i P
CinCip T CjBCiq = 0ij0agp

CiaCjp + CipCiay — 0

First study on the triangular lattice



We use the operator equation (valid on each site 7):

1 1 2 o, U

Then we decouple the interaction via

oxp (?Z/dﬁf) _ /DcI?i(T) exp (Z/dT %

1




In this manner, we obtain the “spin-fermion” model

Z = /DCQDCI_D) exp (—S)
S = /dTZcT o €k | Ck
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We have exactly transtormed the Hubbard model
to the “spin-fermion” model with electronic Hamil-
tonian described by electrons c;, on the square

or triangular lattice with dispersion

o _Zt (’La Z"‘vpa +CI+”P’C)‘CZ@)
_MZ 7,04 za+Hmt

are coupled to a magnetic moment order pa-
rameter PP (1), p =z, y, 2

mt—_AZq’p claOhpCip+ Ve



Gauge theory of fluctuating antiferromagnetism

For fluctuating antiferromagnetism
(spin density waves (SDW)), we transform to a ro-
tating reference frame using the SU(2) rotation R;

( Cit > ( wz—l- )

Cil %

in terms of fermionic “chargons” ©, and a Higgs
field H*(7)

oPdP (i) = R; c*H (i) R)

The Higgs field is the SDW order in the

rotating reference frame.

We will see later that the ¢, are € particles of the
Zio spin liquid.



Gauge theory of fluctuating antiferromagnetism

The SU(2) rotation R; obeys RIR = 1 and
SO we write

R — < A )
The z, are spin S = 1/2 bosonic spinons.

We will see later that the z, will become
the e particles of the Zs spin liquid.



Gauge theory of fluctuating antiferromagnetism

Field |Symbol|Statistics|SU(2)gauge |[SU(2)spin|U(1)e.m.charge
Electron c fermion 1 2 -1
AF order| & boson 1 3 0
Chargon| fermion 2 1 -1
Spinon | R or z| boson 2 2 0
Higgs H boson 3 1 0

Note that this representation is ambiguous up to a
SU(2) gauge transformation, V;

(

Vi +
Vi _

)+

Vi +
Vi

R; — R;V}
o H (i) = V; o"H (i) V.

)

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)




Gauge theory of fluctuating antiferromagnetism

The simplest effective Hamiltonian for the fermionic chargons is the

same as that for the electrons, with the magnetic order replaced
by the Higgs field.

- Z tp (w’jv Z"‘”p, _I_ wz—|—'vp’ .,S) o /’L Z wlswi’s —I_ 7_[lﬂt
1,0 )

Hmt:_)\ZHCL wzs stzs + Vi

IF we can transform to a rotating reference frame in which H(i) =
a constant independent of time, THEN the 1 fermions in the
presence of fluctuating magnetism will inherit the Fermi surfaces
(if present) of the electrons in the presence of static magnetism.
For insulating spin liquids, we consider the case where the chargons
are fully gapped, and there are no Fermi surfaces.

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)



Gauge theory of fluctuating antiferromagnetism

Field |Symbol|Statistics|SU(2)gauge |[SU(2)spin|U(1)e.m.charge
Electron c fermion 1 2 -1
AF order| & boson 1 3 0
Chargon| fermion 2 1 -1
Spinon | R or z| boson 2 2 0

oo
ek

Higgs H boson 0

The Higgs phases of the SU(2) gauge theory
can realize states with topological order.
The topological order depends upon the

structure of the Higgs condensate.




Gauge theory of fluctuating antiferromagnetism

We obtain different numbers of adjoint Higgs scalars, Ny,
depending upon the spatial dependence of the local spin
correlations:

Neel correlations (un- and electron-doped cuprates):
N, =1,

K = (7, 7m),

Ho(5) = Hi(r)eS™

Coplanar spin correlations on the triangular lattice :
N;, = 2,

= (47/3, 47T/\/_)
H(i) = Re {[H{(r) + iHS(r)] e}

Bidirectional incommensurate correlations (hole doped cuprates):
N, = 4,

K,=(rnm-9), K, =(m—46,7),

H* (i) = Re { [H{( )+ iH (r)] Ko T 4 [Hy (r) + iH () e v}



Gauge theory of fluctuating antiferromagnetism

We obtain different numbers of adjoint Higgs scalars, Ny,
depending upon the spatial dependence of the local spin
correlations:

Neel correlations (un- and electron-doped cuprates):
N, =1,

K = (m,m),

Ho(5) = Hi(r)eS™

Coplanar spin correlations on the triangular lattice :
N;, = 2,

K = (47/3,4m/v/3), |
He(i) = Re {[H{(r) + iHg(r)] e}

Bidirectional incommensurate correlations (hole doped cuprates):
Ny =4,



Spin liquid on the triangular lattice

SU(2) gauge theory
For the triangular lattice, IV}, = 2, we define
the complex Higgs field

H* = H +i1HS.
The SU(2) gauge theory is

1 1
L =3 |0H — eanc ALHC[" + 5 F Fl, + V(M)

4g2 " HvT

Fo, = 9,A% —0,A% — AL AC
V(HY) = s(HY™HY) + ug (HPHY)? + uy [HOH|

+ ug (HOHY)® + c.c..
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e This corresponds to fluctuating coplanar spin configurations of the
triangular lattice.



Spin liquid on the triangular lattice
e For u; > 0, we obtain a Higgs phase (H®) « (1,14,0)

e This corresponds to fluctuating coplanar spin configurations of the
triangular lattice.

e Although (H®) # 0, spin rotation symmetry is preserved. The gauge-
invariant observable H*H® corresponds to a charge-density-wave at
wavevector 2K, but (H*H®*) = 0.



Spin liquid on the triangular lattice
For u; > 0, we obtain a Higgs phase (H%) « (1,1,0)
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Vo’ HVT with V = ( _01 _01 )



Spin liquid on the triangular lattice
For u; > 0, we obtain a Higgs phase (H%) « (1,1,0)

This corresponds to fluctuating coplanar spin configurations of the
triangular lattice.

Although (H*) # 0, spin rotation symmetry is preserved. The gauge-
invariant observable H*H® corresponds to a charge-density-wave at
wavevector 2K, but (H*H®*) = 0.

The Higgs condensate breaks the SU(2) gauge symmetry down to a Zs
gauge symmetry (this is different from the Weinberg-Salam model):
the condensate is only invariant a gauge transformation c*H® —
Vo’ HVT with V = ( _01 _01 )

The Higgs phase of the SU(2) gauge theory has finite energy Zo vor-
tex defects (visons!) associated with 7 (SO(3)) = Zs. These are

analogous to Z Abrikosov vortices in the Ginzburg-Landau theory of
superconductivity




Spin liquid on the triangular lattice

4
®

cH* =V (0)c?HS VT ()

V(0) =exp (in®c®0/2)



Spin liquid on the triangular lattice

4-fold degeneracy on the torus



Mott insulator: Triangular lattice antiferromagnet

Higgs condensate (H*) o (1,4,0) Higgs condensate (H%) o (1,4,0)
Spinons R condensed (R) # 0 Spinons R gapped (R) = 0

Z5 spin liquid
with neutral S = 1/2 spinons
and vison excitations

non-collinear Néel state

S, g
<«——» O(4)* CFT3

A.V. Chubukov, T. Senthil and S. Sachdev, Physical Review Letters 72, 2089 (1994)



Mott insulator: Triangular lattice antiferromagnet

/.

Field |Symbol|Statistics|SU(2)gauge |[SU(2)spin|U(1)e.m.charge ty;e
Electron C fermion 1 2 -1 1
AF order| & boson 1 3 0 1
Chargon| fermion 2 1 -1 €
Spinon | R or z| boson 2 2 0 e
Higgs H boson 3 1 1
Vison m boson 1 1 0 m



Symmetry fractionalization in the topological phase of the spin-% Ji-J» triangular Heisenberg model

S. N. Saadatmand™ and I. P. McCulloch
ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics,
The University of Queensland, St. Lucia, Queensland 4072, Australia
(Received 15 July 2016; published 13 September 2016)

Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of
the spin-liquid phase of the spin—% J1-J, Heisenberg model on the triangular lattice. We find four distinct ground
states characteristic of a nonchiral, Z, topologically ordered state with vison and spinon excitations. We shed
light on the interplay of topological ordering and global symmetries in the model by detecting fractionalization
of time-reversal and space-group dihedral symmetries in the anyonic sectors, which leads to the coexistence of
symmetry protected and intrinsic topological order. The anyonic sectors, and information on the particle statistics,
can be characterized by degeneracy patterns and symmetries of the entanglement spectrum. We demonstrate the
ground states on finite-width cylinders are short-range correlated and gapped; however, some features in the
entanglement spectrum suggest that the system develops gapless spinonlike edge excitations in the large-width
limit.

PHYSICAL REVIEW B 94, 121111(R) (2016)
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Hole doped cuprates

Yang He,YiYin, M. Zech,A. Soumyanarayanan, |. Zeljkovic, M. M.Yee, M. C. Boyer, K. Chatterjee,W. D.Wise, Takeshi Kondo,
T.Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdey, E.W. Hudson, and |. E. Hoffman, Science 344, 608 (2014)

K. Fujita, Chung Koo Kim, Inhee Lee, |Jinho Lee, M. H. Hamidian, |.A. Firmo, S. Mukhopadhyay, H. Eisaki,
S. Uchida, M. ). Lawler, E.-A. Kim, J. C. Davis, Science 344, 612 (2014)
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We have exactly transtormed the Hubbard model
to the “spin-fermion” model with electronic Hamil-
tonian described by electrons c;, on the square
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Fermi surface+antiferromagnetism

Hole
states
occupied

Electron
states
occupied

\\

+

)

The electron spin polariza-
tion obeys

<<I§(r, 7')> = NeKr

where K = (m,7) is the or-
dering wavevector.



Fermi surface+antiferromagnetism

In momentum space, the coupling between N and the electrons
takes the form

Hing = A E - Ng - Gy qafapCeiK s
k,q,a

where ¢ are the Pauli matrices, the boson momentum q is small,
while the fermion momenum k extends over the entire Brillouin
zone. In the antiferromagnetically ordered state, we may take
N (0,0,1) , and the electron dispersions obtained by diago-
nalizing H. + H;nt are

2
Er + € El — € -~
Fis = = 2““‘ :\/< a 2““‘) + A2V 2

This leads to the Fermi surfaces shown in the following slides
as a function of increasing |N].
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Metal with “large” Fermi surface



Fermi surface+antiferromagnetism

Fermi surfaces translated by K = (7, 7).



Fermi surface+antiferromagnetism

“Hot” spots



Fermi surfacetantiferromagnetism
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Electron and hole pockets in
antiferromagnetic phase with (®) # 0




Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with electron doping
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Electron doped cuprates

NdQ—m Ce:l: CUO4:5

Doping Dependence of an n-Type Cuprate Superconductor Investigated by

Angle-Resolved Photoemission Spectroscopy

N. P.Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki,
Z.-X.Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and Y. Tokura

Phys. Rev. Lett. 88, 257001 (2002)



PNAS 116, 3449 (2019)

Fermi surface reconstruction in electron-doped cuprates
without antiferromagnetic long-range order

Junfeng He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. Xu,
Y.Wang, E.W. Huang, T. Jia, S.-D. Chen, B. Moritz, D.-H. Lu,Y.S. Lee,
T. P. Devereaux and Z.-X. Shen

New photoemission measurements at zero magnetic| &
field show Fermi surfaces in quantitative agreement |

with quantum oscillation measurements.

The energy gap between the electron and hole pock-
ets collapses near x = 0.17 like an order parameter.

r

-

“The totality of the data points to a mysterious or-
der between x = 0.14 and * = 0.17, whose appear-
ance favors the F'S reconstruction and disappearance
defines the quantum critical doping. A recent topo-
logical proposal provides an ansatz for its origin.”

J




Square lattice Hubbard model with electron doping
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Square lattice Hubbard model with electron doping

(%) £ 0 (@) £0[ (@) =01 (&%) =0
and large : Higgs phase’
: with :
: Topological !
- U
r r
m | IS
| 0.175
Metal with :  Met3l with i Metal with
electron pockets | electfonand ;' “large” Fermi
. hole pockets surface

¢* = Antiferromagnetism at (7, 7) .



Gauge theory of fluctuating antiferromagnetism

The simplest effective Hamiltonian for the fermionic chargons is the

same as that for the electrons, with the magnetic order replaced
by the Higgs field.

- Z t’O (wja ’L—|—’Up, —I_ w’lﬁ"'vp, .,S> o ILL Z wg,3¢i78 _I_ 7_llnt
2P 0

Hmt__)\ZHa wzs sswzs + Vi

IF we can transform to a rotating reference frame in which H%(i) =
a constant independent of time, THEN the 1 fermions in the
presence of fluctuating magnetism will inherit the Fermi surfaces
(if present) of the electrons in the presence of static magnetism.
For the electron-doped cuprates, the chargons acquire the small,
reconstructed Fermi surfaces of the doped antiferromagnet.

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)



Gauge theory of fluctuating antiferromagnetism

We obtain different numbers of adjoint Higgs scalars, Ny,
depending upon the spatial dependence of the local spin
correlations:

Neel correlations (un- and electron-doped cuprates):
N, =1,

SU(2) gauge
symmetry

K = (7, 7m),

He (i) = H (r)e

broken down
to U(I)

Coplanar spin correlations on the triangular lattice :
N;, = 2,

= (47/3, 47T/\/_)
H(i) = Re {[H{(r) + iHS(r)] e}

Bidirectional incommensurate correlations (hole doped cuprates):
N, = 4,

K,=(rnm-9), K, =(m—46,7),

H* (i) = Re { [H{( )+ iH (r)] Ko T 4 [Hy (r) + iH () e v}
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Junfeng He,

C. R.Rotundu,
M. S. Scheurer,
Y. He,

M. Hashimoto,
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Square lattice Hubbard model with electron doping
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¢* = Antiferromagnetism at (7, 7) .



Topological quantum matter

Emergent gauge fields are obtained by
transformations to a “rotating reference frame”.
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SU(2) gauge theory Higgsed down to 22 yields
quantum phases with Z> topological order
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SU(2) gauge theory Higgsed down to 22 vyields
quantum phases with Z> topological order

Theory of fluctuating antiferromagnetism in the
electron-doped cuprates. Found a metallic state
with topological order, reconstructed Fermi
surfaces, and violation of the Luttinger theorem.
This phase can explain recent photoemission
experiments near optimal doping.



