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Condensed matter systems … 
“hard to understand”

Controllable (synthetic) quantum many-body systems

Quantum Simulators



Engineer specific Hamiltonians 
Highly tuneable 
High level of coherence over large 
time scales 
Good access for measurements
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Study the equilibrium properties
Follow the (non-equilibrium) dynamics

Preparation of many-body quantum states
…

Controllable quantum many-body systems



Dissipation in many-body systems

Hamiltonian engineering 

the coupling to an external environment is  detrimental

Question:
Is it possible to  engineer the environment to perform 
quantum information protocols?

… understanding the dynamics of many-body open systems



“Pre”-history

Effect of dissipation and macroscopic quantum 
dynamics (Caldeira-Leggett, Larkin-Ovchinnikov, Schmid, Ambegaokar-
Eckern-Schoen, Hanggi, Weiss, Grabert, Ingold, …) 

Josephson junction arrays  (“prehistory” of 
quantum simulators) (Chakravarty, Ingold, Zimanyi, Schoen, 
Eckern, Mooij, Kivelson, Ingold, Kampf, Eckern-Schmid, …)

Before Quantum Information



J.E. Mooij group 

Josephson junction arrays



Josephson junction arrays



“History”

Engineered baths 
Non-equilibrium effects 
Optical lattices, cavity arrays, trapped ions, … 
Open system quantum simulators

After Quantum Information

“A new twist” 



A variety of systems …

Optical lattices with  
engineered dissipation

Cavity arrays

BEC in cavities (Esslinger group)

…



Dissipative dynamics

⇢̇ = �i[H, ⇢] + L[⇢]

- It is the most general form that guarantees that the 𝝆 “remains” a 
density matrix during the evolution 

- The quantum jump operators depend on the system-bath coupling, 
their number is up to the Hilbert space squared 

- Note: ℓ is NOT defined in real space,  
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Markovian bath —> Lindblad form



Competition within the Hamiltonian (e.g.  strong 
local correlation and delocalisation)

H = H0 + gH1

Competition between unitary dynamics and 
damping (e.g. photon leakage and external driving)

H L



Picture from : J. Koch et al 
(2010)

Coupled cavity arrays

Reviews: 
A. Houck, H. Tureci, and J. Koch,  Nat. Phys. 8, 292 (2012). 
M. J. Hartmann, J. Opt. 18, 104005 (2016). 
C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401 (2017).

Photon leakage

Pumping

Competition of photon leakage and 
external driving+Hamiltonian dynamics
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Back to engineered baths …

The idea is to design the form of the Lindblad 
operators in order to realise a desired task 
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S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller Nat. Phys.  (2008)
F. Verstraete, M. M. Wolf, J. I. Cirac, (2009)



The  computational  power  of  purely  dissipative  processes,  and  proven  that  it  is 
equivalent to that of the quantum circuit model of quantum computation.

Any  quantum  circuit  one  can  construct  a  master  equation  whose  steady  state  is 
unique, encodes the outcome of the circuit

There is a route towards preparing many body states and non-equilibrium quantum 
phases by quantum reservoir engineering

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller Nat. Phys.  (2008)
F. Verstraete, M. M. Wolf, J. I. Cirac, (2009)



Engineered baths

⇢̇ = �i[H, ⇢] + L[⇢]⇢̇ =
X
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L`|Di = 0 for any `

Suppose that there is a state such that

⇢s = |DihD|
The steady state is pure and given by

H =
X

`

L†
`L`

Connection with the 
parent Hamiltonian



Engineered baths

Prepare a BEC using dissipation

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller Nat. Phys.  (2008)
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L<i,j> = (a†i + a†j)(ai � aj)
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Bosons on a lattice

The steady state is pure and it is that of a Bose condensate



Competition between Lindblad and Hamiltonian dynamics

⇢̇ = �i[H, ⇢] + L[⇢]

H = U
X
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[a†iaj + h.c.]

Bose-Hubbard Hamiltonian



Competition between Lindblad and Hamiltonian dynamics

S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller  PRL (2010)

U = 0          the steady state is a pure BEC

U << J        the steady state is “thermal”  with an effective temperature ~ U    

Thermal

Condensed
Unst

U/

J/unstable region



Dissipative preparation of a p-wave superconductor
S. Diehl, E. Rico, M.A. Baranov and P. Zoller, Nat. Phys. (2011). 

L<i,j> = (a†i + a†j)(ai � aj)

Fermions on a lattice
N ! 1 and t ! 1

a†i + a†i + ai � aj

j = i+ 1

The dark state is the ground state of the 1D Kitaev model

⇢̇ =
X

`

`

h
L`⇢L

†
` � L†

`L`⇢� ⇢L†
`L`

i



Dissipative state preparation @ fixed N

G(p)
i.j = ha†ia

†
i+1ajaj+1i

The dissipative gap closes at least 
polynomially in the system size and 
thus that the typical decay time to 
the steady state diverges in the 
thermodynamic limit.

F. Iemini, D. Rossini, L. Mazza, R. Fazio, and S. Diehl,  (2015)  
F. Iemini, D. Rossini, R. Fazio, S. Diehl, and , L. Mazza, (2016)

Pairing correlations



“Dissipative preparation”
of 

time-crystals

F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, R.Fazio, PRL (2018) 



Closing of the Liouvillian gap  making the non-equilibrium steady 
state subspace degenerate in the thermodynamic limit 

Oscillating coherences  appearing in the degenerate  subspace 

Liouvillian gap above the degenerate subspace
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Solvable model of a boundary time-crystal

d

dt
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Ŝ�⇢̂bŜ+ � 1

2
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The steady state diagram of the model has two distinct phases

J. Hannukainen and J. Larson PRA (2017)

!0/ < 1

hŜzi 6= 0

!0/ > 1

hŜzi = 0
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The spectrum is gapped 
a n d t h e l o w - l y i n g 
eigenvalues  of the 
Liouvillian have purely real 
values
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Note
Identical features have been already seen in model systems of interacting Rydberg atoms, opto-
mechanical arrays, coupled cavity arrays and interacting spin-systems. 

These phases were all found however in a mean-field approximation, it is not clear to which extent 
they will survive when fluctuations are included.  



Connections 
to 

synchronisation 
and 

Time Crystals



Can time-translational invariance be 
spontaneously broken? 

Wilczek  2013

Time-crystal

Periodic motion of a quantum many body system



Definition of a time crystal

HTime-dependent Hamiltonian

< O >= g(t)

Even Rabi oscillations would fit into the category of time-
crystals

Bad definition:



Definition TTSB: �(~x, t) local order parameter

limh�(~x, t)�(~x0
, t

0)i
V ! 1

! f(t� t0)
|~x� ~

x

0| ! 1

Time crystals

No-go theorem:(*) systems in the ground state or in thermal 
equilibrium cannot manifest any time-crystalline behaviour

Watanabe & Oshikawa  2015

(*) with sufficiently short-interactions



Spontaneous 
breaking 

Hamiltonian 
Period T 

Observables 
Period nT 

Theory
D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117, 090402 (2016).
V. Khemani, A. Lazarides, R. Moessner, and S. Sondhi, Phys. Rev. Lett. 116, 250401 (2016).

Spontaneous 
breaking 

Observables 
Period nT 

H(t+ T ) = H(t)

Floquet time crystals             (TTSB in periodically driven systems)

Observables 
Period nT 

f(t) = limN!1h |Ô(t)| i

f(t+ ⌧B) 6= f(t) ⌧B = nT=

Experiments
J. Zhang et al, Nature 543, 217 (2017)
S. Choi et al, Nature 543, 221 (2017).



Quantum synchronisation & steady state limit cycles

Ô
macroscopic order 
parameter

Lee, Haffner, and Cross (2011)
M. Ludwig and F. Marquardt,(2013)
Jin, et al (2013)
Schiro’, et al (2016)
Chan, Lee, and Gopalakrishnan (2015)
…

hÔiss = Tr⇢ssÔ = f(t)

hÔiss



Dissipation is not always “a problem” 

Many-Body state preparation 

Possibility of “exotic” phases

Conclusions


