Spin-splitting in
Rashba-Active Weak Links
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spin-orbit interaction
confined to the weak link




Use of electrical currents (or
fields) to generate spin current
and polarization
magneftic fields or ferromagnets




spins of mobile electrons can be manipulated by spin-orbit interactions

—the spin of an electron moving through a spin-orbit active material
(e.g., semiconductor heterostructures) rotates around an effective
magnetic field generated by the spin-orbit interaction.
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E Rashba

* Rashba spin-orbit interaction is significant at surfaces and interfaces

due to strong internal uncompensated atomic electric fields (normal to
surface) that appear since the surface potential breaks the symmetry of
the atomic orbitals there (strong atomic fields no longer cancel as they
do in the bulk). Electric fields generated by gates can then modulate the
strength of the Rashba interaction.




*tunneling amplitude with spin-orbit interaction
and spin splitting by Rashba interaction

*Rashba splitting of Cooper pairs

*breaking time-reversal symmetry

—by a Zeeman field
—by an AC Rashba infteraction created by a slowly-rotating electric field

spin-orbit interaction
preserves time-reversal
symmetry




=
spin-orbit interaction

* Electron moving in an
electric field experiences a

“magnetic” field in its rest-
frame

Semiconductors

*In solids the electric field is
the gradient of the crystal
potential —>"magnetic field”
odd in the momentum to
preserve time-reversal
symmetry

*In two-dimensions the
interaction is integrated over
the growth direction—>linear
iIn the momentum

B ~ E x p/mc?

* structural inversion
asymmetry—>Rashba

* bulk inversion
asymmetry —>Dresselhaus
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Hso ~ UBO - E X p/m02
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Nitta, Akazaki, Takayanagi, Enoki, Gate control of
spin-orbit interaction in an inverted InGaAs/InAlAs
heterostructures, PRL 78 (1997)




as the electron moves ballistically a distance L, the angle by which the spin
Is rotated by the linear spin-orbit interaction is independent of the velocity,
l.e., the rofation angle is determined by the spin-orbit coupling and by L

experimental parameters

l., < rotation by

Dresselhaus spin-orbit parameter for GaAs ¢ = p?/(Bm*) ~ 1 — 10um
Dresselhaus spin-orbit parameter for dual-gated
InAs/GaSb quantum well b, ~ .Bum  (28.5 meVA)

Rashba spin-orbit parameter for dual-gated
InAs/GaSb quantum well ¢, = h?/(am*) ~ .125 — 25um (75 ~ 53 meV A)

Rashba spin-orbit parameter for inversion layer of ¢, ~ .06 —.125um
the heterostructure 110.75Gag.2545/Ing 754l 25 A8
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Rashba interaction and Dresselhaus
interaction can add up—(| 10) direction

~

Manchon, Koo, Nitta, Frolov, Duine,

Perspectives for Rashba spin-orbit
coupling, Nat. Materials, 14 (2015)

~

Beukman, de Vries, van Veen, Skolasinski, Wimmer,
Qu, de Vries, Nguyen, Yi, Kiselev, Sokolich, Manfra,
Nichele, Marcus, Kouwenhoven, Spin-orbit
interaction in dual gated InAs/GaSb quantum well,
PRB 96 (2017)
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Large spin-orbit coupling in carbon nanotubes

G.A. Steele!, F. Pei!, E.A. Laird', J.M. Jol', H.B. Meerwaldt' & L.P. Kouwenhoven'

It has recently been recognised that the strong spin-orbit interaction present in solids can
lead to new phenomena, such as materials with non-trivial topological order. Although the
atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can
be significant due to their curved surface. Previous works have reported spin-orbit couplings

in reasonable agreement with theory, and this coupling strength has formed the basis of a
large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon
nanotube devices that is an order of magnitude larger than previously measured. We find a
zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of
29T aligned along the nanotube axis. Although the origin of the large spin-orbit coupling is
not explained by existing theories, its strength is promising for applications of the spin-orbit

interaction in carbon nanotubes devices.




Bychkov and Rashba, Oscillatory
effects and the magnetic susceptibility
of carriers in invention layers, J. Phys.
C 17 (1984)

phenomenological Hamiltonian for spin-
orbit coupling in uniaxial-symmetric
systems lacking inversion symmetry
(heterostructures, surfaces)
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Tunneling matrix element?




The Schrodinger equation for an
electron moving on a ring, subjected to
the Rashba interaction

i %t kGh(0) -] 0(0) = ew(s)

n(f) = |[cos(f),sin(6), 0]

Gauge transformation:




Electron moving through infinitesimal g
acquires phase factor

V(0 + dB) = explik (0) - o dd(0)
n(f) = xcos(f) + ysin(0)

bu"‘: Qston(el)'GQston(92)°0’ # Gston(92)'G€ston(91>°0’

there appears effective magnetic field along Z n || B.g
y e_Zk:SOdﬁL.O-e_ZkSOdﬁR.O-
(LZ—»X g Ts — = e, o) ees g
| —— ) I — " + 4 sin(2k,,d) cos(8)o,, — i sin? (k. d)sin(20)o,




Berry phase—Ubiquitous explanation

T —— | spinor

B A/-y\ resultant magnetic field

8§ — ain the adiabatic lunit




00) = | By B2 | PO

PLy(6) = P5p(6) = e (cosl(a— )6] — i cos(y) sinf(a — -)0])
2 = = _je~i3 sin(x) sin[(a — %)9] 7 actual effective B
At 620 04 k. sin(y) [dimensionless k] /X-\
Aharonov-AInandan Dyniamical phase

(Berry) phase original effective B

SO

e — =26 — o= |1 —1/cos(x)]/2




*Aharonov and Casher, Topological quantum effects for
neutral particles, PRL 53, (1984)

*Aharonov and Anandan, Phase change during a cyclic
quantum evolution, PRL 58, (1987)

*Qian and Su, Spin-orbit interaction and Aharonov-Anandan
phase in mesoscopic rings, PRL 72, (1994)

* Avishai, Totsuka, and Nagaosa, Non-abelian Aharonov-
Casher phase factor in mesoscopic systems, arXiv:
1904.01751

Y. Aharonov J. Anandan




Shabhazyan and Raikh, Low-field anomaly in 2D hopping
magnetoresistance caused by spin-orbit term in the

tunneling amplitude—
energy spectrum, PRL 73, (1994)

the propagator

propagation of a plane wave

(wave vector k) along a
straight segment of length s

1 0 2
s (_%_EA) i H(k) = E +kk80(ﬁ><§)-a

@

—I—ksofl-ax (—ii—EA)—B-J
T gSE G

omit Aharonov-Bohm phase due to A, ignore
Zeeman interaction due to B, assume nl||E
normal to plane where KkKis
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the propagator

propagation of a plane wave

(wave vector k) along a
straight segment of length s
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propagation of a plane wave
(wave vector k) along a
straight segment of length s

. : : : is+/ k2 +k2
e F SO
propc.xgcfhon amPln‘ude is a unitary | — irm® ) . explik, N X § - o]
matrix in the Hilbert space of the spin VEE + K2,
Tunneling amplitude Loty |
. . Ep <p | peme
also a unitary matrix

o5y (1/a2)—k2, S
P(E) = —mm® explik, L X § - O]

V(1/a?) — k2,

Bardarson, a proof of Kramers degeneracy

time-reversal symmefiry -> no
spin polarization in two-terminal

Junctions of the scattering matrix, J. Phys. A 41 (2008)

of transmission eigenvalues from antisymmetry




The model exploited in the
calculations: the location of the
quantum dot vibrates normal to
the wire in the junction plane

S‘ Y i WRG_WL] ;
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Shekhter, OEW, and Aharony,
Suspended nanowires as

mechanically-controlled Rashba
spin filters, PRL 111 (2013)

The spin-orbit interaction in the
bent wire can be modulated
mechanically by loads and
electrically, by biasing the STM




Shekhter, Gorelik, Glazman, and Jonson, Electronic Aharonov-Bohm effect induced
by quantum vibrations, PRL 97 (2006)

Electrons tunneling through the weak link (e.g., SWNT) excite flexural vibrations in
the presence of Aharonov-Bohm type magnetic field
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FIG. 2 (color online). Nanoelectromechanical system pro-
posed to show the coherent coupling between quantum electron
transport and quantum flexural vibrations discussed in the text.
Electrons tunneling through a doubly clamped SWNT excite
quantized vibrations of the SWNT in the presence of a magnetic
field, H. The resulting effective multiconnectivity of the system
leads to a negative magnetoconductance (see text).




Unpolarized leads

_ RY Y P ine_iwL]a’a‘n,HQ

27re
O' ’I’L’I’L—

HL(R),c — U /
(R),o L(R) Bt 00) hi o — Hpe + (N —n)w

% (1 —c B[UL,G_MR,U/_i_(n/_n)w] —1

€

(almost) no effect of
Rashba interaction on the
tunneling conductance

Summing over spin indices (to obtain
the charge current) implies

0

leading to the Landauer formula
(particle current)

(Tl T




4 Cr— ' SO Ny, - . SO
CL—‘X r —= 1 — 2sin*(k, d) cos*(0)

g Fr SO
T r— A\, --------------------------- u  +isin(2k,d) COS(H)Uy - z’SinZ(kSOd) sin(20)o,

6
6 =8, + 2 CO;( 0) (b4 b")
I'yT'p
I , + I, = U—L=E sin®(2k,,d)
TES
For a certain spin component: 280w
XYYP )| {n| cos( )|n—|—€>|2€5€w_1

=0 —1




Rashba spin splitter

Dynamic of the spin is deterministic (i.e., not
random as from magnetic impurities) =
interference of spins in nanostructures with
spatially localized spin-orbit inferaction
Induces spin currents in unpolarized
conductors, currenfs which are not
associated with charge transportfation. The
Rashba spin splitter can be designed by
mechanically funing the nanowire.




Insulator

Rashba splitting of Cooper pairs
Josephson current -

Cooper pair

Superconductor

Splitting of the spin state of paired N
electrons (that carry the Josephson current) k(@)
—>  interference between the channel

where 1| and the channel where 11

|

|n‘|‘er{:eren ce Pa‘l""ern |n ‘I'he ampl”‘ude OF ‘|'he FIG. 3. The Josephson cumrent J(¢) divided by its value without

) the SO interaction, J,(¢), for the genuine Rashba configuration

Josephson Curr’en‘l' (nO‘I' fhere N 'l'he normal [Eqs. (7) and (8)] as a function of kyd/(2x). The largest

amplitude is for the zero bending angle, @ = 0, decreasing

Conduc'l'ance) gradually for @ = n/6, x/5, n/4, /3, x/2.5 [Fig. 2(b)]. Relevant
values of k., are estimated in the text

SO

Shekhter, OEW, Aharony, Jonson, Rashba splitting of Cooper pairs, PRL 116, (2016)




Josephson equilibrium current

*electrons in the source are paired in time-reversed
states in which their spins are antiparallel

*supercurrent carried by Cooper pairs flows in the non-
superconducting link when there is a (order-parameter)
phase difference across the weak link

*the electrons tunnel one-by-one but the Cooper pairs
maintain superconducting coherence (link shorter than the
coherence length)

*when reaching the drain the electrons are paired again




*Supercurrent is proportional to the
superconducting phase difference

I(p) = Iysin(p)
Y = ¢r — PR

*the critical current for a junction with
identical superconductors A
P IO — G,n

2e

* (7., is the normal-state conductance

Ambegaokar and Baratoff,
tunneling between
superconductors, PRL 10, (1963)




Illustration . N N 5 a S

(semi-classical ¢ o spin — orbit o 7 .
coupling (k. d) & st ot

description)

Evolution of spin states of electrons
moving between two bulk leads via
link in which they are subjected to
Rashba interaction (effective

magnetic field directed along y)

N-N: if the spin in left is along z, the sequential
spin at right is in a coherent transfer
superposition of

Cooper pair S-S (Coulomb-blockade-no double occupancy on the link)
two electrons in time-reversed quantum states, their spins are
reversed wrt one another, rotation angles have opposite signs.

Final state is a coherent mixture of spin-singlet and spin-triplet
state, but only the former can enter into the second S, leading to a
reduction in the amplitude of the Josephson current.




Transfer of Cooper pairs through a weak link

*Cooper pairs are transferred between superconducting leads via
virtual localized states

*Coulomb blockade-the members of the pair are transferred
sequenftially

*short weak link-dependence of the matrix element for a single-
electron transfer on electron energy in the virtual state can be
ignored d < hop/|A]

*conservation of longitudinal momentum




Josephson tunneling
H=H; +Hr+H
L R T

HL — Y S‘ Ckacka

+ (ALewL Z CLTCT_M + H.c.)
k

Single-electron tunneling Hop= Y 7 ( A 1eCkes T H:C- )

kD oo’

Time-reversal symmetry [ka]aa (W —p— gl




Josephson current For

calculation of the current
(second-order in the tunneling)

I, = —e(Ny) = —ie(H, chacka

gives for the equilibrium (no bias) Josephson current

I{p) 1
P ([W]aa it [W]O'—O')
Iy(p) 2 zg:
Without the spin-orbit interaction )}/ is diagonal in spin space

OO0




Rashba splitting of Cooper pairs
(in the Coulomb blockade regime)

ul """""""""""""" L M

equilibrium (no bias) Josephson current

1(e)
Iy(»)

@

. . / ﬁ
(41
Josephson tunneling 7 shift @ 1.

J@ [
@ “b v l“‘"""

special cases :
Gl — A 2

1t

FIG. 3. The Josephson current /(¢ ) divided by its value without
the SO interaction, Jy(¢), for the genuine Rashba configuration
[Egs. (7) and (8)] as a function of kyd/(2x). The largest
amplitude is for the zero bending angle, € = 0, decreasing

Norma[_sfafe Conducfance IS unchanged gradually for 0 = /6, x/5, x/4, x/3, x/2.5 [Fig. 2(b)]. Relevant

values of k,, are estimated in the text.




Lifting the Coulomb blockade

(will this destroy the coherent spin precession)

1st electron comes into the link at t: leaves at t3
2nd electron comes into the link at t2 leaves at t-

“single-electron tunneling channel” by <tz <ty <ty

electrons tunnel sequentially one by one

““double-electron tunneling channel”
Coulomb interaction comes into play

Xi()

T~

@ ' - A
@i @/ o) Cﬁ' X,(t)
@ Vb, v:t1/ @)‘ t

conflict with

Pauli principle




modeling spin precession of Cooper pairs

*the “meeting point” is modeled by a
quantum dot with spin-up and spin-down
states; injection info these states obeys

the Pauli principle (breaking the coherent
evolution of spin states before and after the meeting)

*single-electron tunneling from leads to
the quantum dot

*Coulomb repulsion on the dot

*the results are averaged over the
location of the quantum dot

quantum




Systems Hamiltonian H=H,+Hr+ M
+ edid, +Udld,dld, v

Tunneling through dot:

Hiwn = Hrp + Hegp + Hpr + Hpr

HLD . Z [tk]aa’CLfda’

k,o,0’

1. Going from the e
time-reversed state of o', i.e., (G (iO'y)|O‘,> to state | — k, o)

T = K(io,) requires t, = Tt, T

trlos = [bkloor

Shekhter, OEW, Jonson, Aharony, Spin precession in spin-orbit coupled
weak links: Coulomb repulsion and Pauli quenching, PRB(R), 96 (2017)




One particle on the link <HLD (t HDR( 1

two particles on the link (Hrp()Hrp(ty)

3. In the first scenario the tunneling
amplitudes can be grouped to yield an

effective L<->R amplitude, Vir;

In the second they cannot.




4. Spin dependent transmission

_ f T
One particle on the link T = 9 ZOVLRVLR]O'J — [VLRVLR]U—J)

o

two particles on the link| T, = (|[Vorlsl® = Vsl ) (IVeplsl® = Vil ?)

Loss of coherence at the quantum dot due to the Pauli principle

5. “energy denominator” due to quantum dot

Fl(i i /OO dx;;lw2 [[COSh(CCl) o i][cosh(xl) + cosh(x,)][cosh(zs) + i]] —1

— OO

£ = [ 0 feosha) + £l + Blleoshian) + £1]

Glazman and Matveey, Resonant Josephson current through Kondo
impurities in a tunnel barrier, JEPT Lett., 49 (1989)




mechanical and electric manipulation of the

supercurrent in the Coulomb-blockade regime

FIG. 3: (Color online) A density plot of the normalized
Josephson current, Eq. (18), as a function of the angle 6
between vy and vgr and the spin-orbit coupling constant, &
[see Egs. (35)]. The parameters that determine Eqs. (15)
and (16) are ¢/A =0 and U/A = 5.




Spin-orbit interaction created by slowly-
rotating electric field perpendicularly to
the (one-dimensional) weak link

\

Even though the leads are non magnetic,
and there is no bias, the rotating electric
field creates DC spin current and
transverse spin components which rotate
around the link, flowing into the leads

(a)

(b)

L R

FIG. 1: Schematic visualizations of devices proposed in the
text. (a) A spin-orbit-active weak link connects two con-
tacts, L and R, to form a closed circuit. The time-dependent
spin-orbit interaction is generated by two perpendicular gates,
whose potentials V;,(¢) and V() oscillate slowly in time with
frequency (2. The arrows within the weak link indicate the di-
rections in which polarized electron-spins are flowing. (b) An
open-circuit version of (a) where spin is accumulated in two
terminals leading to a magnetization that can be measured.

Jonson, Shekhter, OEW, Aharony, Park, Radic, DC spin generation by
junctions with Ac driven spin-orbit interaction, arXiv:1903.03321




Htun (t) — Z Z([WLR(t)]UU’CLaCPJ’ + HC) T, UL T_’x

spin — orbit active
“.. weaklink v

k.p 0,0’

Wpr(t) = Jexplippc(t) = J explhy,d[x x n(t)] - o]

Circularly-rotating electric field n(t) = cos(2t)z — sin(Qt)y

elliptically-rotating electric field n(t) = [cos(Q)z — sin(Qt)y]/\/COSQ(Qt) + A2 sinQ(Qt)

Validity of the adiabatic limit:  Q < [dwell time on link] ™"

G hv @&
ke A A transparency: & —— ~5 0.5
/¢
vp ~ :e ~ 10%°cm/s for InAs nanowire
m* i

RE) < 3meV = A =~ 0.1meV
g =2 >0 0 GHZ




System’s Hamiltonian: H = Hionas + Hiwn (t)
Hon® = 3 (WonWloochcpr +He)  Higads = P €xChioCreo + Z €pCho oo
k,p 0,0’ k,O‘
1SN “, d
rate™ (R, (t),4 = = Y ks ()i () Particle current (left lead): I;(t) = Z[RL (t)],,
k
! d
Rate of change of the total M. (1) = — A
Spin (leﬂ' lead): L( ) dt ;;< ka( ) oo’ “ko ( )>
o Z[RL(t)]O'O' o
s
ME(t) = = > (elq (g ) + el (e ()
example: i

in units of: g,uB/Q




Systems Hamiltonian:

Htun(t) — Z Z([WLR(t)]GU’ClT{anG’ + HC)

t
dt, e

Ry (Oloo = 3 Ufaley) — Fules) /

k,p Py

H = Hleads T Htun (t) ’
Hleads —

x (ei(ek—ep)(t_tl)[WLR(t)WgR(tl)]U,O i H.C.) o




Resul’rs: 1

.‘.
Particle current is X
conserved: [; + I =0 4

spin currents are
not: M (t) = Mpg(?)

L I — | R

Particle current:

. [ = (4n[WoPNNR ) (ng — 1)
M7 = E]—"(Q) sin® (k. d) ( junéfion ERch

G 0 conductance/e

FO) = [ B2, 0) — fale e — '+ 9) = 6w — o — Q)

junction conductance (units of DC longitudinal spin
quantum conductance) (G /Go generated by AC electric field




Transversed

gy The sum of the two transversed spin
magnefization: component is along the vector

[0, sin(2t), — cos(§2t)]

G F(Q)

MY (t) =
L (t) G,

sin(2k..,d)[0, sin(£2t), — cos(£2t)]

.‘.
X ,LLL,NL + :uRaNR
% «— U—>

FO) = [ B2, 0) — fale e — '+ 9) = 6w — o — Q)

junction conductance (units of
quantum conductance) G/G,




An un-biased weak link between two terminals, which is
subjected to a Rashba spin-orbit interaction caused by
an AC electric field that rotates periodically in the plane
perpendicular to the link, injects spin polarized

electrons into the terminals. The DC component of the

polarization vanishes for a linearly-polarized electric
field.




Breaking time-reversal symmetry
with a Zeeman field

Due fo the Zeeman field, both charge
and spin current exhibit oscillations with
the links length in conjunction with the
spin-orbit coupling. This can be used to
measure the strength of the spin-orbit
inferaction

Aharony, OEW, Jonson, Shekhter, Electric and

magnetic gating of Rashba-active weak links,
PRB(R) 97, (2018)




Shabhazyan and Raikh, Low-field anomaly in 2D hopping
tunn e“ng amplifude— magnetoresistance caused by spin-orbit term in the
energy spectrum, PRL 73, (1994)

the propagator

propagation of a plane wave

(wave vector k) along a
straight segment of length s

1 d 2 2
== — _ k kkso 2 A
H 2m>|<( st CA) i?‘[(k‘): Yo -+ PR (HXS)-O'_B.O-
fodie s d
—l—mnax(—z£—2A)—B-a

omit Aharonov-Bohm phase due to A, ighrore-
.B, assume nl||E

normal fo _plane where K is




propagator
without time-reversal symmetry

L E+i0t — A —H (k) -
E— k%‘/(Qm*) G(87 E) — /Cll{jGZkS ¢ ka2 eff( ) o
(B +i0% — 575)? — Hig(k)

Cauchy integration leads to 2 2 .
two Poles | kﬂ: o kF T :Izzm*Heff(kj:) two residues A::

Interference in spin Tunneling amplitude is no more
space due to Aharonov = unitary (no more a simple rotation)
Casher phase

G(s;E) x e®+°A, (1+¢q, -0)+e**A_(1-q_-0)

qy = Heff(k::)/Heff(k::)

—> two polarizations

A




propagator
without
time-
reversal

symmeftry

G(s;E) x e+ A (14+q, o) +e"A_(1 -

A

q_

o)

qy = Heff(k:t)/Heff(k:I:)

The two terms correspond to waves with wave

numbers K+ and K- (small Zeeman energy compared to Fermi
energy). The corresponding tunneling amplitudes contain

the spin projection matrices

ligs

The transmitted electrons are fully polarized along

q+ and q-

The non-unitarity of the propagator is due to the Zeeman field. Then a
bias voltage between the leads generates charge and spin currents.

L




Hamiltonian | |

P,0
te: L d T — > > V CT c 4 He )
rare: RO'O'/ — % Z<Ckacko'/> tun kp oo’ Yko pa’ C.
- kap oo’

GD

LR A
, p|n orbit activ ,
... weaklink ’

Both generated by |\
the bias

Particle current [, = Z Rga

Spin current ML e Z Rga/a

7;/0 = 76(U50-70-, —I_ W : [0.]0'/0')

charge current

spin current




Kso/ ke

spin current

0.20
0.15
0.10
0.05

0.6

0.4

0.2

SO

in {B,,,B} — plane

SO

normal to
{B,,,B} — plane

SO?

magnetoconductance
oscillates with the length
of the weak link

charge current

0.4
< 0.3
£ 0.2
0.1
| | | 0
0 0.1 0.2
m'H,/k?

FIG. 2: (Color online.) The magnetoconductance difference,
U,; — U,, calculated for krd = 20, as function of the spin-orbit
coupling (k,,) measured in units of the Fermi wave vector,
and the Zeeman energy, measured in units of kg/m*. The
oscillations shown are due to the term o cos(a) of Ui;; o =

(ky — k_)d.




*net amount of charge and magnetic moment per unit
time is transferred through a biased, spin-orbit active,
week link;

*oscillations as function of (k«-k-)d;

*the injected magnetization can be measured by a
properly-positioned superconducting quantum
interference device, or by a magnetic-resonance force
microscope.
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