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Plan

I will explain

I why Majoranas are hard to make;

I why symmetries are really important;

I what cool tricks one can play to make Majoranas.

I won’t tell anything about

I how to detect Majoranas and distinguish them from fake
Majoranas;

I how we can use Majoranas for quantum computing;

I what happens in ongoing experiments.

But happy to chat afterwards!



Adaptive

Our simulations use the adaptive library for samping.



Part I: 3D



Majorana bound states: Basic properties

Majoranas in a minimal model

H = τz
(
p2/2m + αpσy

)
+ ∆τx + EZσz

appear when
E 2
Z > ∆2 + µ2

Q: Do we miss anything?



Symmetries and protection

E
k

P

I Particle-hole symmetry E (k) = −E (−k) not good enough to
guarantee the gap.

I Tilting is a consequence of broken time reversal ⇒ we should
be worried.

I Chiral (“BDI”) symmetry gives CH(k)C = −H(k) and holds
when lSO < d .
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Symmetries: what is available?

A less minimal model:

HBdG =

(
p2

2m∗ − µ
)
τz + C (E · σ × p)τz

+
1

2
gµBB · σ + ∆τx .

p = i∇+ eAτz

I By breaks C (known), but so does A!

I Let’s search for all possible symmetries
I There can be two more:

I If By = 0: chiral + reflection C′HC′ = −H, C′ = σyτyδ(y + y ′)
I If By = Bz = 0: x-reflection σxτ0H(k)σxτ0 = H(−k).
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Phase diagrams
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Phase diagrams

Proximity superconductivity:
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The phase diagram is very sensitive to geometry and parameters.



Conclusions I

Orbital field:

I Point B along the wire :-/

I Keep chemical potential low :-/

I Hard to make a T-junction :-(



Part II: Supercurrents



Can we make Josephson junctions better?

Consider:

1. Josephson junctions lower the critical field (Ady’s talk)

2. Phase differences break time reversal symmetry

3. We need more than 1 phase difference to close the gap (van

Heck, Mi, AA)

Q: can we make Majoranas in Josephson junctions without
magnetic field?

A: Yes, but it we will have to work for it!



Can we make Josephson junctions better?

Consider:

1. Josephson junctions lower the critical field (Ady’s talk)

2. Phase differences break time reversal symmetry

3. We need more than 1 phase difference to close the gap (van

Heck, Mi, AA)

Q: can we make Majoranas in Josephson junctions without
magnetic field?
A: Yes, but it we will have to work for it!



Step 1

Minimal system, 2 supercurrents

1. Try λT = 2× λB

breaks inversion

2. λT = λB ,
but narrow wire W < lSO
. . . has an extra reflection

3. W ∼ lSO , X spin splitting
+ mysterious symmetry
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Step 2

Tuning to the topological regime

1. Tune µ ⇒ No gap!?

2. Charge-momentum
conservation law
O = (−1)nτz

3. Broken by
V ∼ cos(2πx/λV )
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Step 3: Robustness check

Trying periodic potential + 2 more:

Symmetry breaking

Phase diagrams
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Conclusions part II

1. We created Majoranas without magnetic field :-)

2. We had to discover 4 extra symmetries 8-o

3. The topological gap is still small, needs more work :-(



Part III: Zigzag



The problem of Josephson junction Majoranas

Long trajectories ⇒ tiny ∆
Workarounds:

I Low density, makes everything
more disordered :-(

I Disorder, need just the right
amount :-(

Q: Can we remove long trajectories by
design? (Tom Laeven)

A: Nah, you are just going to break
everything (me)
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Band structures
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Majoranas
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Topological phase diagram
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Conclusions part III



Conclusions

I Majoranas require control over several competing and complex
phenomena.

I Their complexity also offers unexpected approaches.

I Symmetry considerations, scaling analysis, and simulations
work combine to a powerful tool.



The end.
Questions?


