Majorana bound states: on scales and symmetries

Anton Akhmerov with Tom Laeven, André Melo, Bas Nijholt, Sebastian Rubbert, and Michael Wimmer PRB **93**, 235434 (2016) & arXiv:1903.06168 & arXiv:1905.02725 (+code).

ICTP Summer School "Advances in Condensed Matter Physics", 10 May 2019

Plan

I will explain

- why Majoranas are hard to make;
- why symmetries are *really* important;
- what cool tricks one can play to make Majoranas.
- I won't tell anything about
 - how to detect Majoranas and distinguish them from fake Majoranas;
 - ▶ how we can use Majoranas for quantum computing;
 - what happens in ongoing experiments.

But happy to chat afterwards!

Adaptive

Our simulations use the adaptive library for samping.

Part I: 3D

Majorana bound states: Basic properties

Majoranas in a minimal model

$$H = \tau_z \left(p^2 / 2m + \alpha p \sigma_y \right) + \Delta \tau_x + E_Z \sigma_z$$

appear when

$$E_{\rm Z}^2 > \Delta^2 + \mu^2$$

Q: Do we miss anything?

Symmetries and protection

▶ Particle-hole symmetry E(k) = -E(-k) not good enough to guarantee the gap.

Symmetries and protection

- ▶ Particle-hole symmetry E(k) = -E(-k) not good enough to guarantee the gap.
- ► Tilting is a consequence of broken time reversal ⇒ we should be worried.

Symmetries and protection

- Particle-hole symmetry E(k) = −E(−k) not good enough to guarantee the gap.
- ► Tilting is a consequence of broken time reversal ⇒ we should be worried.
- ► Chiral ("BDI") symmetry gives CH(k)C = -H(k) and holds when I_{SO} < d.</p>

$$H_{BdG} = \left(\frac{\mathbf{p}^2}{2m^*} - \mu\right)\tau_z + C(\mathbf{E}\cdot\boldsymbol{\sigma}\times\mathbf{p})\tau_z$$
$$+\frac{1}{2}g\mu_B\mathbf{B}\cdot\boldsymbol{\sigma} + \Delta\tau_x.$$
$$\mathbf{p} = i\nabla + e\mathbf{A}\tau_z$$

$$H_{BdG} = \left(\frac{\mathbf{p}^2}{2m^*} - \mu\right)\tau_z + C(\mathbf{E}\cdot\boldsymbol{\sigma}\times\mathbf{p})\tau_z$$
$$+\frac{1}{2}g\mu_B\mathbf{B}\cdot\boldsymbol{\sigma} + \Delta\tau_x.$$
$$\mathbf{p} = i\nabla + e\mathbf{A}\tau_z$$

$$H_{BdG} = \left(\frac{\mathbf{p}^2}{2m^*} - \mu\right) \tau_z + C(\mathbf{E} \cdot \boldsymbol{\sigma} \times \mathbf{p}) \tau_z$$
$$+ \frac{1}{2} g \mu_B \mathbf{B} \cdot \boldsymbol{\sigma} + \Delta \tau_x.$$
$$\mathbf{p} = i \nabla + e \mathbf{A} \tau_z$$

- ► B_y breaks C (known), but so does **A**!
- Let's search for all possible symmetries

$$H_{BdG} = \left(\frac{\mathbf{p}^2}{2m^*} - \mu\right) \tau_z + C(\mathbf{E} \cdot \boldsymbol{\sigma} \times \mathbf{p}) \tau_z$$
$$+ \frac{1}{2} g \mu_B \mathbf{B} \cdot \boldsymbol{\sigma} + \Delta \tau_x.$$
$$\mathbf{p} = i \nabla + e \mathbf{A} \tau_z$$

- B_y breaks C (known), but so does **A**!
- Let's search for all possible symmetries
- ► There can be two more:
 - If $B_y = 0$: chiral + reflection C'HC' = -H, $C' = \sigma_y \tau_y \delta(y + y')$
 - If $B_y = B_z = 0$: x-reflection $\sigma_x \tau_0 H(k) \sigma_x \tau_0 = H(-k)$.

Phase diagrams

 $\Delta = {\rm const}$

Orbital effects are stronger than Zeeman

Phase diagrams

Proximity superconductivity:

The phase diagram is very sensitive to geometry and parameters.

Orbital field:

- ▶ Point **B** along the wire :-/
- ► Keep chemical potential low :-/
- ► Hard to make a T-junction :-(

Part II: Supercurrents

Consider:

- 1. Josephson junctions lower the critical field (Ady's talk)
- 2. Phase differences break time reversal symmetry
- 3. We need more than 1 phase difference to close the gap (van Heck, Mi, AA)

Q: can we make Majoranas in Josephson junctions without magnetic field?

Consider:

- 1. Josephson junctions lower the critical field (Ady's talk)
- 2. Phase differences break time reversal symmetry
- 3. We need more than 1 phase difference to close the gap (van Heck, Mi, AA)
- Q: can we make Majoranas in Josephson junctions without magnetic field?
- A: Yes, but it we will have to work for it!

1. Try
$$\lambda_T = 2 \times \lambda_B$$

- 1. Try $\lambda_T = 2 \times \lambda_B$ breaks inversion
- 2. $\lambda_T = \lambda_B$, but narrow wire $W < I_{SO}$

- 1. Try $\lambda_T = 2 \times \lambda_B$ breaks inversion
- 2. $\lambda_T = \lambda_B$, but narrow wire $W < I_{SO}$... has an extra reflection
- 3. $W \sim I_{SO}$, \checkmark spin splitting

- 1. Try $\lambda_T = 2 \times \lambda_B$ breaks inversion
- 2. $\lambda_T = \lambda_B$, but narrow wire $W < I_{SO}$... has an extra reflection
- 3. $W \sim I_{SO}$, \checkmark spin splitting + mysterious symmetry

Step 2

Tuning to the topological regime

1. Tune $\mu \Rightarrow No gap!?$

Step 2

Tuning to the topological regime

- 1. Tune $\mu \Rightarrow No gap!?$
- 2. Charge-momentum conservation law $\mathcal{O} = (-1)^n \tau_z$

Step 2

Tuning to the topological regime

- 1. Tune $\mu \Rightarrow No gap!?$
- 2. Charge-momentum conservation law $\mathcal{O} = (-1)^n \tau_z$
- 3. Broken by $V \sim \cos(2\pi x/\lambda_V)$

Step 3: Robustness check

Trying periodic potential + 2 more:

Step 3: Robustness check

Step 3: Robustness check

- 1. We created Majoranas without magnetic field :-)
- 2. We had to discover 4 extra symmetries 8-o
- 3. The topological gap is still small, needs more work :-(

Part III: Zigzag

The problem of Josephson junction Majoranas

```
Long trajectories \Rightarrow tiny \Delta
Workarounds:
```

- Low density, makes everything more disordered :-(
- Disorder, need just the right amount :-(
- Q: Can we remove long trajectories by design? (Tom Laeven)

The problem of Josephson junction Majoranas

Long trajectories \Rightarrow tiny Δ Workarounds:

- Low density, makes everything more disordered :-(
- Disorder, need just the right amount :-(
- Q: Can we remove long trajectories by design? (Tom ${\sf Laeven})$

The problem of Josephson junction Majoranas

Long trajectories \Rightarrow tiny Δ Workarounds:

- Low density, makes everything more disordered :-(
- Disorder, need just the right amount :-(
- Q: Can we remove long trajectories by design? (Tom ${\tt Laeven})$
- A: Nah, you are just going to break everything (me)

OK, but does it have Majoranas?

Majoranas

Majoranas

Oh wow! But maybe you are very lucky?

Topological phase diagram

Conclusions part III

(a)
10000(((00110))))(0000)
$\xi_M = 26.7 \ \mu m$

MAJORANASIN ZIGZAGJUNCTIONS

Conclusions

- Majoranas require control over several competing and complex phenomena.
- ► Their complexity also offers unexpected approaches.
- Symmetry considerations, scaling analysis, and simulations work combine to a powerful tool.

The end. Questions?