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Plan

1. How to solve a scattering problem?
2. How to define and solve it with Kwant?



Kwant

I An open source package for quantum transport
I https://kwant-project.org
I New version (1.4) released a couple of months ago
I Works with tight binding models
I Main focus on the scattering matrix formalism of quantum

transport
Maintainers: Christoph Groth, Michael Wimmer, Anton Akhmerov,
Xavier Waintal, Joseph Weston
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Case study: a bend in a quantum spin Hall insulator

I Topologically protected
transmission across a bend

I k · p Hamiltonian

H(kx , ky ) =

+ µ− D(k2
x + k2

y )

+ [M − B(k2
x + k2

y )]τz

+ A[kxσzτx + kyτy ]

QSH Phase

spin ↑

spin ↓



Discretize

I Kwant works with tight-binding models and a finite number of
degrees of freedom

I ⇒ discretize space onto a square lattice with lattice spacing a
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In Kwant

Discretize

Check the matrix elements

Check the symmetries



Infinite system

has the Hamiltonian:

H =


. . . VL

V †L HL VL

V †L HL VL

V †L HS


(HL and VL are block-diagonal if there are many leads)



In Kwant

Scattering region



In Kwant

Make a lead

Combine everything



Scattering problem

Now to get conductance and other observables, we only
need to calculate Σlead, GR , G<, and we’re done.

(that is what one mostly hears)

. . . But there is a more intuitive definition.
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Scattering problem

Problem statement:

H =


. . . VL

V †L HL VL

V †L HL VL

V †L HS

 , ψ =


...
ψ2
ψ1
ψS


We are solving (H − E )ψ = 0 with a fixed E .



Modes in the lead

Since the leads are translationally invariant, we decompose the lead
wave function into eigenvectors of translation (lead modes)

ψj = λjψ0,

Now substitute into H:

VLψ0 + Hλψ0 + V †Lλ
2ψ0 = 0,

or in a matrix form:(
−V−1

L HL −V−1
L

V †L 0

)(
ψ0

V †Lψ1

)
= λ−1

(
ψ0

V †Lψ1

)
. . . or in a more stable form and reduced basis:

(
iA†H̃−1B −A†H̃−1B

−1 + iB†H̃−1B −B†H̃−1B

)(
ψ̃0

ψ̃1

)
= λ−1

(
A†H̃−1A −1 − iA†H̃−1A

B†H̃−1A −iB†H̃−1A

)(
ψ̃0

ψ̃1

)
,

H̃ = HL + iAA† + iBB†, VL = AB†, ψ̃0 = B+ψ0, ψ̃1 = A+ψ1
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Separating the modes

Split all the eigenvectors into incoming, outgoing and evanecsent,
such that:

〈ψin|Î |ψin〉 = 1

〈ψout|Î |ψout〉 = −1

〈ψevan|Î |ψout〉 = 0, |λevan| < 1



In Kwant

Dispersion

Modes at E = 0



In Kwant

Mode wave functions



Equations to solve

Substitute the lead modes into the Hamiltonian and get a linear
system: (

−Uout 1
V †LUoutΛout HS

)(
S
ψS

)
=

(
Uin

−V †LUinΛin,

)
(1)

with Uin and Uout wave functions of incoming and outgoing modes,
and Λ ≡ diag(λi ).

Next: write down these linear equations and solve them.
(NB: if we start by eliminating S, the rhs becomes HS + Σ)
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Solving a scattering problem

The scattering region is large and its Hamiltonian is sparse.



Solving a scattering problem

Naive solution: gaussian elimination
(dense LU decomposition, cost L6)



Solving a scattering problem

Better option: reshuffle to reduce bandwidth
(“recursive Green’s functions”, cost L4)



Solving a scattering problem

What specialized libraries do
(nested dissection, cost L3, ∼ 10× better):



In Kwant

Scattering matrix



In Kwant

Scattering matrix

Current density



In Kwant

Scattering matrix

Spin density



Conclusions

I Write down a problem + feed it to a good solver = problem
solved

I Kwant does this with quantum transport
I Try a live version at

https://tiny.cc/maryland-kwant-tutorial
(I used code and images from it)

https://tiny.cc/maryland-kwant-tutorial


The end.
Questions?


