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Non-abelian states of matter

A system with
1. Agapped spectrum
2. A degenerate ground state (protected degeneracy)

Energy gap

v
Degenerate ground state



The degeneracy should be topologically protected -
The Hamiltonian:
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Virtual transitions to excited states induce only
exponentially small splitting between ground states, due to
the energy gap




Introducing dynamics into the state by interchanging “quasi-particles”
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Interchange implements a unitary transformation within this subspace



Up to a global phase, the unitary transformation depends only on the
topology of the trajectory

As robust as an electronic system gets. ..



Topological quantum computation (Kitaev 1997-2003)

« Subspace of degenerate ground states, separated by an energy
gap from the continuum of excited states.
 Unitary transformations within this subspace are defined by the
topology of braiding trajectories

- Immunity to errors
 Local operators do not couple between ground states

— Immunity to decoherence

Examples to non-abelian systems:

« Topologically protected localized zero energy excitations in
superconductors, a.k.a. Majorana fermions

» Certain quantum Hall states (Moore-Read-Rezayi)



The simplest example — Majorana fermions in topological

superconductors
(Kitaev, Read&Green, Kopnin, Saloma)

A superconductor at mean field theory is described by the BdG
Hamiltonian
H A Y
— () F 0

A quadratic Hamiltonian!

a matrix with two important properties:

 Even dimensional

e Spectrum is symmetric around zero energy

= An even number of zero energy states

= Two well separated zero energy modes are protected



* non-abelian static defects.
* May be realized in one dimensional wires and in vortex cores
of two dimensional topological superconductors.

Properties —
The Majorana zero modes y; are unitary operators that satisfy

[Hr)/i] =0
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Span the subspace of degenerate ground states



Topological Superconductivity in Nanowires

Quantum wire with spin-orbit coupling and Zeeman field:
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Topological Superconductivity in Nanowires
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Topological superconductivity in planar Josephson junctions




Going half a dimension higher —
1D topological superconductor in a 2D setting

Ingredients:

v 1D

v Superconductivity
2 DEG v Magnetic field

New knobs to tune — phase difference, Josephson current,
enclosed magnetic flux

New features:
« Robust topological phase with no fine-tuning (for ¢ ~ )
« Can tune itself the topological phase!



Robust topological phase with no fine-tuning (for ¢ = m)

Phase difference
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Zeeman energy * traversal time

Only weak dependence on the chemical potential
(Spin orbit energy >> Zeeman energy, wide superconductors)



First order phase transition between trivial and topological state
— the system self tunes to the topological regime

The phase difference at the ground state:
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The transition coincides with a minimum
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Setup and Model
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Hamiltonian in the normal region:
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We are looking for states within the gap, bound between the

two superconductors
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Almost the particle in the box problem, except the boundary
conditions - Andreev processes
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For distinguishing topological from trivial, we need to look at k,=0

For the ground state energy and energy gap, we need all k,,

Topological invariant = fermion parity at k,=0  Kitacv (2001)
= Look for single gap closing at k,=0

Andreev bound state spectrum, A « u: ﬁ;
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phase acquired upon phase acquired upon
Andreev reflection traversing the junction

Narrow jU| Iction, i.e. A K /W . ¢ Bx
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Phase Diagram

k,.=0 bound states: Gap closing lines (for any W):
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State is doubly degenerate!
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Majorana end states

edge

E/A E/A



What if the superconductors are narrow?
(with Setiawan Wenming and Erez Berg, 2019)

Width of superconductor « induced coherence length hvg/A.
« Normal reflections from the interface with the vacuum = minimum
field required for topological superconductivity.




Experiments — Nichele - Marcus group (NBI)

Measuring the tunneling density of states
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Experiments — Yacoby group (Harvard)

Measuring the tunneling density of states

at the end of the junction
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Experiments — Goswami group (Delft)

Measurement of the recovery of the critical current with
Increasing parallel magnetic field
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FIG. 2. | Magnetic field-driven 00— transitions. a, Variation of the switching current, I,, with in-plane magnetic field,
By, at V; =0V for the same JJ as in Fig. 1b,e. Two distinct revivals of I, are visible at B, = 470 mT and 1250 mT, associated
with 0—# transitions. The data is from two cool downs (CDs). The momentum shift, 6k/2, of the Fermi surfaces due to
the Zeeman field is sketched in the inset. The solid (dashed) lines depict the situation at zero (finite) magnetic field, and the
arrows represent the spin orientation. b, [, as a function of B, at V; = 0 V for four JJs with different lengths. For better
visibility, ls is normalized with respect to fs at By = 0 T. Dashed lines indicate Box, the field at which the transition occeurs
for each length. The inset shows a linear dependence of Bo— on 1/L, in agreement with ballistic transport. ¢, I. vs. By at
three different V; for the JJ with L = 1.1 ym. By . shifts to lower values of B, with more negative gate voltages. [, vs. V at
By = 400 mT shows a non-monotonic behavior as displayed in the inset. The length and gate dependence of panel b and ¢ are
in qualitative agreement with Eq. 1.



The effect of disorder on the localization of the zero modes

With Arbel Haim (Cal-Tech)
Arxiv 1808.07886



Numerically -

For weak disorder, Majoranas get
(significantly) better localized.

In contrast to 1D p-wave superconductors.

Why —
1. Identify the culprit — large k gap
2. The effect of disorder on that gap —

combination of selection rules and pairing
phases.
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Spectrum of excitations in the topological phase

Aei¢/2

Smallest gap at the two Fermi momenta



Think about the spectrum as coming from pairing of several
modes
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Effect of disorder - perturbative calculation:
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« To be affected by a channel, need to be able to scatter into it
« Once scattered into it, the phase of its pairing potential
matters.

Particular cases:

« Disorder scattering into the pairing partner — necessarily
reduces A.¢r (phase difference of ).

Anctet, = A, =—A_,,

« Delocalizes Majorana modes in p-wave superconductors.



 Different situation for s-wave superconductors
« Selection rule — disorder does not flip spin, so no
scattering to pairing partner.
* No phase difference of pairing potentials.

 Disorder enhances localization



In our case, large k behaves like s-wave, small k behaves like p-
wave

The small k determines topology, the
large k determines localization.

Magnetic impurities couple large-k pairing partners, and delocalize
the Majorana modes
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Manipulating and braiding the Majorana zero modes

With Erez Berg (Chicago, WIS)



Perpendicular magnetic field makes the phase vary along the junction

()

Four Majorana zero modes —
two at the junction ends, two movable by B,



The two zero modes at the interior may be moved by varying the
magnetic field, or by driving a supercurrent through the junction.

O
, B, stretches the covered range
i of ¢, while supercurrent shifts
it.
T
0

—2T




Detour - Screening currents and Josephson vortices
* A super-conductor accommodates a magnetic field in the
form of circular vortices formed due to magnetic field

generated by circulating super-currents. A vortex involves
2m phase winding and one flux quatum Z—Z

A=20 +d
| e



Screening current and phase configuration

« In a Josephson junction, the phase configuration is
determined by balancing the magnetic energy, (9,.¢)?%, with
the Josephson energy V(o).

« For an SIS junction,

V(p) = (1 —cos¢),
the phase satisfies a Sine-Gordon equation, and the
vortex Is a Sine-Gordon soliton.

« Generally, the soliton is the trajectory between two minima
of V(¢). Follows 02p =V'(¢)

* Here, VV'(¢) Is more complicated, and is determined by the
parallel magnetic field.



Roughly, we need to minimize

— ‘cos(d)B -+ (I)/z) ‘ — ‘COS((I)B — (I)/z) ‘

First order phase transition at ¢z=mr/4 — the system tunes itself into

a topological phase.
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At the transition point, V(¢) has a period of & rather than 2m, so
the soliton is halved — a « vortex.

The m-vortex separates between trivial and topological regions
— carries a zero mode. A 2 vortex carries two zero modes.



What do we have so far?
 Trivial/topological phases tuned by phase difference/parallel
field. Topological phase has end modes.

« Extra Majorana zero modes created by perpendicular
magnetic field.

« Majorana zero modes movable by perpendicular
field/supercurrent

Calls for a scheme for braiding!



The current-driven tri-junction braiding scheme:

Braiding in 1 4+ € dimensions
Alicea et al., many follow-ups

For the planar Josephson junction —
Hell, Flensberg, Leijnse

The knobs:

« Parallel magnetic field

- Perpendicular magnetic field —  fixed
(assume L « 4;, no screening currents) _

« Currents — time dependent




The single junction:

* In the absence of screening currents the phase varies linearly
with position, with the slope determined by the perpendicular
magnetic field.

« Limit ourselves to 0-2 MZMs per arm

phase
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The tri-junction —

1. Quantization of the vorticity at the center

p1(x1 =0) + pa(r2 = 0) + p3(rg = 0) = 27n

2. Continuity of the magnetic field at the center

Oz p1(1 = 0) = Oppa(wa = 0) = Dz = 0)




The plane of no-vortex at the center
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A topological manipulation — motion along a trajectory that cannot
be contracted to a point

Current minimizes L; + V(¢g;)



Sau et al,
Karzig et al. 2016
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Can be looked at as six zero modes, out of which two are coupled




Summary

1.

The relative phase is a user-friendly parameter to use
on the way to topological superconductivity.

First-order phase transition where the system self tunes
itself to the topological regime.

Fractionalization of the Josephson vortex at the phase
transition.

Disorder localizes the Majorana modes.

Scheme for Majorana braiding.



The current-driven tri-junction braiding scheme:

Braiding in 1 4+ € dimensions
Alicea et al., many follow-ups

For the planar Josephson junction —
Hell, Flensberg, Leijnse

The knobs:

« Parallel magnetic field

« Perpendicular magnetic field —  fixed
(assume L K 4;, no screening currents) 3}

« Currents — time dependent




The single junction:

* In the absence of screening currents the phase varies linearly
with position, with the slope determined by the perpendicular
magnetic field.

« Limit ourselves to 0-2 MZMs per arm
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The tri-junction —

1. Quantization of the vorticity at the center

p1(x1 =0) + pa(r2 = 0) + p3(rg = 0) = 27n

2. Continuity of the magnetic field at the center

Oz p1(1 = 0) = Oppa(wa = 0) = Dz = 0)




The plane of no-vortex at the center
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A topological manipulation — motion along a trajectory that cannot
be contracted to a point

Current minimizes L; + V(¢g;)
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Can be looked at as six zero modes, out of which two are coupled

Karzig et al. 2016







