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Non-abelian states of matter 

A system with 

1. A gapped spectrum

2. A degenerate ground state (protected degeneracy)

E

Degenerate ground state

Energy gap



The degeneracy should be topologically protected -

The Hamiltonian:
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Virtual transitions to excited states induce only 

exponentially small splitting between ground states, due to 

the energy gap
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Introducing dynamics into the state by interchanging “quasi-particles” 

),..,;............,.........( 11 Nk RRrrA ground state:

Energy gap

quasi-particlesElectrons

ground states
N
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position of 

quasi-particles

Interchange implements a unitary transformation within this subspace 

𝑔. 𝑠. 1 𝑅1, 𝑅2, …
𝑔. 𝑠. 2 𝑅1, 𝑅2, …

𝑔. 𝑠. 𝜆𝑁 𝑅1, 𝑅2, …

𝑅1, 𝑅2…



Up to a global phase, the unitary transformation depends only on the 

topology of the trajectory
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As robust as an electronic system gets…



Topological quantum computation              (Kitaev 1997-2003)

• Subspace of degenerate ground states, separated by an energy 

gap from the continuum of excited states.

• Unitary transformations within this subspace are defined by the 

topology of braiding trajectories 

- immunity to errors

• Local operators do not couple between ground states 

– immunity to decoherence

Examples to non-abelian systems:

• Topologically protected localized zero energy excitations in 

superconductors, a.k.a. Majorana fermions

• Certain quantum Hall states (Moore-Read-Rezayi)



The simplest example – Majorana fermions in topological 

superconductors
(Kitaev, Read&Green, Kopnin, Saloma)

A superconductor at mean field theory is described by the BdG

Hamiltonian 

𝐻 = 𝜓+ 𝜓
𝐻0 Δ

Δ+ −𝐻0

𝜓

𝜓+

A quadratic Hamiltonian!

a matrix with two important properties:

• Even dimensional

• Spectrum is symmetric around zero energy 

⇒ An even number of zero energy states

⇒ Two well separated zero energy modes are protected



• non-abelian static defects. 

• May be realized in one dimensional wires and in vortex cores 

of two dimensional topological superconductors. 

Properties –

The Majorana zero modes 𝛾𝑖 are unitary operators that satisfy

𝐻, 𝛾𝑖 = 0

𝛾𝑖
2 = 1

𝛾𝑖 , 𝛾𝑗 ∝ 𝛿𝑖𝑗

𝛾𝑖 = 𝛾𝑖
+

Span the subspace of degenerate ground states
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Topological Superconductivity in Nanowires

Quantum wire with                     spin-orbit coupling and Zeeman field:

Lutchyn et al. PRL 2010

Oreg et al. PRL 2010

𝛾 𝛾

𝐻0 =
𝑘𝑥
2

2𝑚
− 𝜇 + 𝛼𝑘𝑥𝜎𝑦 + 𝐵𝜎𝑧

figure taken from 

Alicea, Rep. Prog. Phys. (2012)

↑↓

𝑘𝑥

𝐸

2𝐵 𝜇

Δ

Requires fine-tuning of 𝜇!



Das et al., 

Nature Physics 2012
Albrecht et al., 

Nature 2016

Rokhinson et al., Nature Phys. (2012), Deng et al., Nano Lett. (2012), 

Churchill et al., Phys. Rev. B (2013), Nadj-Perge, Science (2014)

Mourik et al., 

Science 2012

Topological Superconductivity in Nanowires



Topological superconductivity in planar Josephson junctions



Going half a dimension higher –

1D topological superconductor in a 2D setting

2 DEG

𝐵

Δe𝑖𝜙/2

Δe−𝑖𝜙/2

𝛾 𝛾

New knobs to tune – phase difference, Josephson current, 

enclosed magnetic flux 

New features:

• Robust topological phase with no fine-tuning (for 𝜙 ≈ 𝜋)

• Can tune itself the topological phase!

Ingredients:

 1D

 Spin-orbit

 Superconductivity

 Magnetic field

𝑊



Phase difference

Zeeman energy * traversal time

Only weak dependence on the chemical potential 

(Spin orbit energy >> Zeeman energy, wide superconductors)

Robust topological phase with no fine-tuning (for 𝜙 ≈ 𝜋)
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Hart et al. arXiv,1509.02940 (2015)

The phase difference at the ground state:

The transition coincides with a minimum 

of the critical current.

First order phase transition between trivial and topological state 

– the system self tunes to the topological regime



𝐻0

=
𝑘𝑥

2
− 𝜕𝑦

2

2𝑚
− 𝜇

+ 𝛼 𝑘𝑥𝜎𝑦 + 𝑖𝜕𝑦𝜎𝑥 + 𝐵𝑥𝜎𝑥

Setup and Model

𝐻0

=
𝑘𝑥

2
+ 𝑘𝑦

2

2𝑚
− 𝜇 + 𝛼 𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥

+ 𝐵𝑥𝜎𝑥

Hamiltonian in the normal region:

2 DEG

𝐵

Δe𝑖𝜙/2

Δe−𝑖𝜙/2

𝑥

𝑦

𝑘𝑥

𝑘𝑦

𝑊

ൗ𝐵𝑥
𝑣𝐹

𝐵𝑥 ≪ 𝛼𝑘𝐹



We are looking for states within the gap, bound between the 

two superconductors

2 DEG

𝐵

Δe𝑖𝜙/2

Δe−𝑖𝜙/2

𝑥

𝑦𝑊

Almost the particle in the box problem, except the boundary 

conditions  - Andreev processes

e
e
h



Kitaev (2001)

2cos−1
𝐸𝑛
Δ
+ 𝜙 + 2

𝐸𝑛
𝑣𝐹

𝑊 ± 2
𝐵𝑥
𝑣𝐹

𝑊 = 2𝜋𝑛

Narrow junction, i.e.  Δ ≪ Τ𝑣𝐹
𝑊 :

𝐸𝑛 = Δcos
𝜙

2
±
𝐵𝑥
𝑣𝐹

𝑊 = Δcos(
𝜙

2
± 𝜙𝐵)

Δe−𝑖𝜙/2

𝑦

Δe𝑖𝜙/2
𝑒↑

ℎ↓

𝑊

Topological invariant = fermion parity at  𝑘𝑥=0

 Look for single gap closing at 𝑘𝑥=0

phase acquired upon 

Andreev reflection 

phase acquired upon 

traversing the junction

For distinguishing topological from trivial, we need to look at 𝑘𝑥=0

For the ground state energy and energy gap, we need all 𝑘𝑥

Andreev bound state spectrum, Δ ≪ 𝜇:
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Insensitive to 𝜇!

𝐸𝑛

𝐸𝑛 = Δcos
𝜙

2
±
𝐵𝑥
𝑣𝐹

𝑊

𝑘𝑥=0 bound states:

𝐵𝑥𝑊

𝑣𝐹

𝜙 ± 2
𝐵𝑥
𝑣𝐹

𝑊 = 2𝑛 + 1 𝜋

Gap closing lines (for any 𝑊):

𝐵𝑥=0

State is doubly degenerate!

π/2    π 3 π/2   

2π φ

0 2𝜋 ∅



Majorana end states



What if the superconductors are narrow?  

(with Setiawan Wenming and Erez Berg, 2019)

Width of superconductor  ≪ induced coherence length ℎ𝑣𝐹/Δ. 

• Normal reflections from the interface with the vacuum ⇒ minimum 

field required for topological superconductivity. 

• Small Δ implies ⇒ intra-subband pairing only. 

⇒

1. the pairing amplitude is averaged Δcos
𝜙

2
. 

2. Right-left symmetry leads to BDI symmetry 

(protects topological transitions at 𝜙 = 𝜋.)     (in wires: Sau et al., 2012)



Experiments – Nichele - Marcus group (NBI)

Measuring the tunneling density of states

at the end of the junction



Experiments – Yacoby group (Harvard)

Measuring the tunneling density of states 

at the end of the junction



Experiments – Goswami group (Delft)

Measurement of the recovery of the critical current with 

increasing parallel magnetic field



The effect of disorder on the localization of the zero modes

With Arbel Haim (Cal-Tech)

Arxiv 1808.07886



Numerically -

For weak disorder, Majoranas get 

(significantly) better localized.  

In contrast to 1D p-wave superconductors. 

Why –

1. Identify the culprit – large 𝑘 gap

2. The effect of disorder on that gap –

combination of selection rules and pairing 

phases. 



Spectrum of excitations in the topological phase

𝜙 = 0, 𝐵𝑥 = 0 𝜙 = 0.57𝜋, 𝐵𝑥 = 0.28 𝜙 = 𝜋, 𝐵𝑥 = 0.5

(a) (b) (c)

2 DEG

𝐵

Δe𝑖𝜙/2

Δe−𝑖𝜙/2

𝑥

𝑦𝑊

Smallest gap at the two Fermi momenta



Think about the spectrum as coming from pairing of several 

modes  

Effect of disorder - perturbative calculation:

Localization length -
ℎ𝑣𝐹

Δ𝑒𝑓𝑓

Δ𝑒𝑓𝑓,𝑚 ≈ Δ𝑚 + σ𝑛≠𝑚
1

𝜏𝑚𝑛
𝑒𝑖 arg Δ𝑛 +𝑖𝛼𝑚𝑛

1

𝜏𝑚𝑛
=

𝑉𝑚𝑛
2

|𝑣|



Δ𝑒𝑓𝑓,𝑚 ≈ Δ𝑚 + 

𝑛≠𝑚

1

𝜏
𝑚𝑛

𝑒𝑖 arg Δ𝑛

• To be affected by a channel, need to be able to scatter into it

• Once scattered into it, the phase of its pairing potential 

matters. 

Particular cases:

• Disorder scattering into the pairing partner – necessarily 

reduces Δ𝑒𝑓𝑓 (phase difference of 𝜋). 

Δ𝑚𝑐𝑚
+𝑐−𝑚

+ ⇒ Δ𝑚 = −Δ−𝑚

• Delocalizes Majorana modes in p-wave superconductors. 



• Different situation for s-wave superconductors

• Selection rule – disorder does not flip spin, so no 

scattering to pairing partner. 

• No phase difference of pairing potentials.

• Disorder enhances localization



In our case, large 𝑘 behaves like s-wave, small 𝑘 behaves like p-

wave

The small 𝑘 determines topology, the 

large 𝑘 determines localization. 

Magnetic impurities couple large-k pairing partners, and delocalize 

the Majorana modes 



Manipulating and braiding the Majorana zero modes

With Erez Berg (Chicago, WIS)



Φ

2π

π

0

−𝜋

−2𝜋

Perpendicular magnetic field makes the phase vary along the junction

2 DEG

𝐵

Δe𝑖𝜙/2

Δe−𝑖𝜙/2

𝛾 𝛾𝛾 𝛾

Four Majorana zero modes –

two at the junction ends, two movable by 𝐵⊥



The two zero modes at the interior may be moved by varying the 

magnetic field, or by driving a supercurrent through the junction.  

Φ

2π

π

0

−𝜋

−2𝜋

𝐵⊥ stretches the covered range 

of 𝜙, while supercurrent shifts 

it.  



Detour - Screening currents and Josephson vortices

• A super-conductor accommodates a magnetic field in the 

form of circular vortices formed due to magnetic field 

generated by circulating super-currents. A vortex involves 

2𝜋 phase winding and one flux quatum
ℎ𝑐

2𝑒
.

• A Josephson junction is a very anisotropic super-conductor, 

so the vortices are elongated



Screening current and phase configuration

• In a Josephson junction, the phase configuration is 

determined  by balancing the magnetic energy, 𝜕𝑥𝜙
2, with 

the Josephson energy 𝑉(𝜙). 

• For an SIS junction, 

𝑉 𝜙 = (1 − cos𝜙), 

the phase satisfies a Sine-Gordon equation, and the 

vortex is a Sine-Gordon soliton. 

• Generally, the soliton is the trajectory between two minima 

of 𝑉 𝜙 . Follows 𝜕𝑥
2𝜙 = 𝑉′ 𝜙

• Here, 𝑉(𝜙) is more complicated, and is determined by the 

parallel magnetic field. 



Roughly, we need to minimize

− cos(ϕ𝐵 + ൗϕ
2) − cos(ϕ𝐵 − ൗϕ

2)

First order phase transition at ϕ𝐵=𝜋/4 – the system tunes itself into 

a topological phase. 

𝜙𝐵 = 0 𝜙𝐵 =
𝜋

8
𝜙𝐵=

𝜋

4
𝜙𝐵=

𝜋

2

−2𝜋 2𝜋 −2𝜋 2𝜋 −2𝜋 2𝜋 −2𝜋 2𝜋 𝜙

𝐸



At the transition point, 𝑉 𝜙 has a period of 𝜋 rather than 2𝜋, so 

the soliton is halved – a 𝜋 vortex. 

The 𝜋-vortex separates between trivial and topological regions 

– carries a zero mode. A 2𝜋 vortex carries two zero modes. 



What do we have so far?

• Trivial/topological phases tuned by phase difference/parallel 

field. Topological phase has end modes.

• Extra Majorana zero modes created by perpendicular 

magnetic field. 

• Majorana zero modes movable by perpendicular 

field/supercurrent

Calls for a scheme for braiding!



The current-driven tri-junction braiding scheme:

Braiding in 1 + 𝜖 dimensions

Alicea et al., many follow-ups

For the planar Josephson junction –

Hell, Flensberg, Leijnse

The knobs:

• Parallel magnetic field

• Perpendicular magnetic field 

(assume 𝐿 ≪ 𝜆𝐽, no screening currents)

• Currents – time dependent

fixed



The single junction: 

• In the absence of screening currents the phase varies linearly 

with position, with the slope determined by the perpendicular 

magnetic field. 

• Limit ourselves to 0-2 MZMs per arm

phase

position



The tri-junction –

1. Quantization of the vorticity at the center

2. Continuity of the magnetic field at the center



# of zero 

modes

2
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6
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The plane of no-vortex at the center



A topological manipulation – motion along a trajectory that cannot 

be contracted to a point  

# of zero 

modes

2

4

6

2 3(2)

(3) (3)

(2)

(2)

(1)

1

(3)

Current minimizes 𝐼𝑖𝜑𝑖 + 𝑉(𝜑𝑖)



1 2 3

Can be looked at as six zero modes, out of which two are coupled

Sau et al, 

Karzig et al. 2016



Summary 

1. The relative phase is a user-friendly parameter to use 

on the way to topological superconductivity.

2. First-order phase transition where the system self tunes 

itself to the topological regime.

3. Fractionalization of the Josephson vortex at the phase 

transition. 

4. Disorder localizes the Majorana modes.

5. Scheme for Majorana braiding. 



The current-driven tri-junction braiding scheme:

Braiding in 1 + 𝜖 dimensions

Alicea et al., many follow-ups

For the planar Josephson junction –

Hell, Flensberg, Leijnse

The knobs:

• Parallel magnetic field

• Perpendicular magnetic field 

(assume 𝐿 ≪ 𝜆𝐽, no screening currents)

• Currents – time dependent

fixed



The single junction: 

• In the absence of screening currents the phase varies linearly 

with position, with the slope determined by the perpendicular 

magnetic field. 

• Limit ourselves to 0-2 MZMs per arm

phase

position



The tri-junction –

1. Quantization of the vorticity at the center

2. Continuity of the magnetic field at the center
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A topological manipulation – motion along a trajectory that cannot 

be contracted to a point  

# of zero 

modes

2

4

6

2 3(2)

(3) (3)

(2)

(2)

(1)

1

(3)

Current minimizes 𝐼𝑖𝜑𝑖 + 𝑉(𝜑𝑖)
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1 2 3

Can be looked at as six zero modes, out of which two are coupled

Karzig et al. 2016




